Diffusive repair for the Ginzburg-Landau equation
نویسنده
چکیده
We consider the Ginzburg-Landau equation for a complex scalar field in one dimension and show that small phase and amplitude perturbations of a stationary solution repair diffusively to converge to a stationary solution. Our methods explain the range of validity of the phase equation, and the coupling between the “fast” amplitude equation and the “slow” phase equation.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملStable localized pulses and zigzag stripes in a two-dimensional diffractive-diffusive Ginzburg-Landau equation
We introduce a model of a two-dimensional (2D) optical waveguide with Kerr nonlinearity, linear and quintic losses, cubic gain, and temporal-domain filtering. In the general case, temporal dispersion is also included, although it is not necessary. The model provides for description of a nonlinear planar waveguide incorporated into a closed optical cavity. It takes the form of a 2D cubic-quintic...
متن کاملBoundary problems for the Ginzburg-Landau equation
We provide a study at the boundary for a class of equation including the Ginzburg-Landau equation as well as the equation of travelling waves for the Gross-Pitaevskii model. We prove Clearing-Out results and an orthogonal anchoring condition of the vortex on the boundary for the Ginzburg-Landau equation with magnetic field.
متن کاملFractional Ginzburg–Landau equation for fractal media
We derive the fractional generalization of the Ginzburg–Landau equation from the variational Euler–Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg–Landau equation for fractal media are considered and different forms of the fractional Ginzburg–Landau equatio...
متن کامل